

Motivation

Lovász (1967) proved that graphs G and H are isomorphic if and only if they are homomorphism indistinguishable over all graphs F the number of homomorphisms $F \to G$ equals the number of homomorphisms $F \to H$.

Homomorphism indistinguishability over restricted graph classes gives rise to a wide range of equivalence relations which can be characterised in terms of systems of equations. For example, graphs G and H are homomorphism indistinguishable over cycles/trees/path if and only if the system $X\mathbf{A}_G = \mathbf{A}_H X$ has an invertible/doubly-stochastic/pseudo-stochastic solution $X \in \mathbb{C}^{V(H) \times V(G)}$. We set out to provide a uniform explanation for such results.

Linear Algebra and Representation Theory, Labelled and Bilabelled graphs

Homomorphism	
Indistinguishability	/

V
Unified Algebraic
Framework

ightarrow Matrix Equations X s.t. $Xoldsymbol{A}_G=oldsymbol{A}_HX$

Paths, trees, cycles, graphs of bounded -width, trees of bounded degree

Labelled Graphs and Homomorphism Tensors

A labelled graph F is a tuple of a graph F and a vertex $u \in V(F)$. Given a graph G, the homomorphism tensor of F is $F_G \in \mathbb{C}^{V(G)}$ where

 ${m F}_G(v)\coloneqq {\sf number\ of\ homomorphisms\ }h\colon F o G\ {\sf such\ that\ }h(u)=v$

for all $v \in V(G)$. This can be extended to bilabelled graphs $\mathbf{F} = (F, u_1, u_2)$ which carry an in-label $u_1 \in V(F)$ and an out-label $u_2 \in V(F)$. Their homomorphism tensors \mathbf{F}_G represent matrices in $\mathbb{C}^{V(G) \times V(G)}$.

Example For every graph G, the homomorphism tensor A_G of the bilabelled graph $A = \frac{1}{2}$ is the adjacency matrix of G.

Operations

Combinatorial operations on (bi)labelled graphs correspond to algebraic operations on homomorphism tensors.

- The sum-of-entries soe F_G equals hom(F,G), the homomorphism count of the underlying unlabelled graph F of F.
- The matrix product $F_G \cdot F_G'$ equals the homomorphism matrix of the bilabelled graph obtained from F and F' by series composition.
- The Schur product $F_G \odot F_G'$ equals the homomorphism vector of the labelled graph obtained from F an F' by gluing.

Example The bilabelled graph $\stackrel{1}{\longleftarrow} \stackrel{2}{\longleftarrow}$ results from the series composition $\stackrel{1}{\longleftarrow} \stackrel{2}{\longleftarrow} \cdot \stackrel{1}{\longleftarrow}$. Its homomorphism matrix is $A_G^2 = A_G \cdot A_G$.

Background image: 'Bicycle race scene. A peloton of six cyclists crosses the finish line in front of a crowded grandstand, observed by a referee.' (1895) by Calvert Lithographic Co., Detroit, Michigan, Public Domain, via Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Bicycle_race_scene,_1895.jpg

Homomorphism Tensors and Linear Equations

Martin Grohe, Gaurav Rattan, and Tim Seppelt

RWTH Aachen University

Inner-Product Compatible Graph Classes

Using linear algebra, we obtain matrix equations for homomorphism indistinguishability over classes of labelled graphs $\mathcal R$ which are

- inner-product compatible, i.e. for all $R,S\in\mathcal{R}$ the homomorphism counts from the graph obtained by gluing R and S and forgetting labels, are equal to the homomorphism counts from some graph in \mathcal{R} , and
- A-invariant, i.e. for every labelled graph $R = (R, u) \in \mathcal{R}$, the labelled graph $A \cdot R$ obtained by adding a fresh vertex u' to R, adding the edge uu', and placing the label on u', is also in \mathcal{R} .

Example The family of labelled paths with labels at end vertices is inner-product compatible. For example,

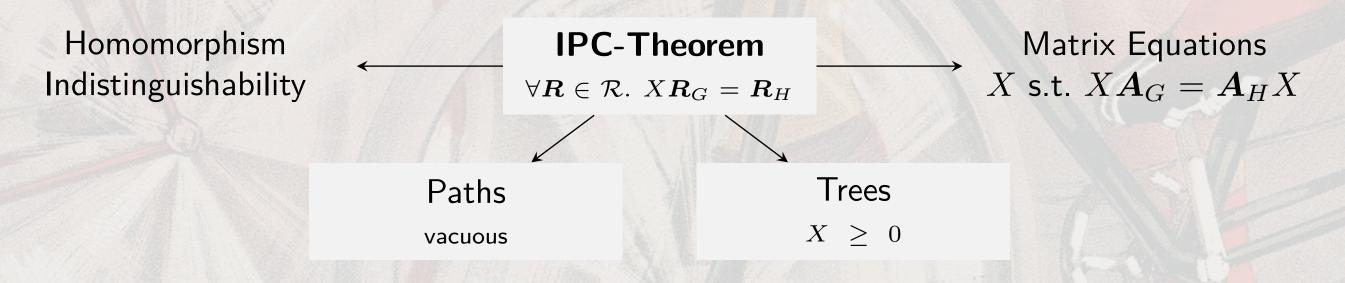
It is also A-invariant. For example, $A \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{2}{2} \cdot \frac{1}{2} = \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2} = \frac$

IPC-Theorem Let $\mathcal R$ be an inner-product compatible and A-invariant family of labelled graphs containing $\frac{1}{2}$. Then for graphs G and H the following are equivalent:

- 1. G and H are homomorphism indistinguishable over R,
- 2. There exists a pseudo-stochastic $X \in \mathbb{Q}^{V(H) \times V(G)}$ such that $X\mathbf{R}_G = \mathbf{R}_H$ for all $\mathbf{R} \in \mathcal{R}$.

Trees and Paths

We apply our theorem to the classes of trees and paths and prove known characterisation of homomorphism indistinguishable over these classes in a uniform manner. In particular, we find a combinatorial explanation for the obscurity that these characterisations differ only in the constraint $X \ge 0$.



Trees of Bounded Degree

Characterising homomorphism indistinguishability over graph classes of bounded degree is a notoriously difficult problem. For trees of bounded degree, we prove the following.

Theorem For every $d \in \mathbb{N}$, there exist graphs G and H such that

- ullet G and H are homomorphism indistinguishable over trees of degree $\leq d$ and
- ullet G and H are not homomorphism indistinguishable over all trees.

In particular, it is not possible to simulate the 1-dimensional Weisfeiler–Leman algorithm (Colour Refinement) by counting homomorphisms from trees of bounded degree.

Specht-Wiegmann Theorem

We use representation theory to derive novel matrix equations characterising homomorphism indistinguishability. The recipe is the following:

- 1. Definition of an involution monoid, for example the *path monoid*
- $\mathcal{P} = \{ \begin{array}{c} 1,2 \\ \bullet \end{array}, \begin{array}{c} 1 & 2 \\ \bullet \end{array}, \begin{array}{c$
- 2. For a graph G, define a representation $\mathcal{P} \to \mathbb{C}^{V(G) \times V(G)}$ mapping \boldsymbol{P} to its homomorphism tensor \boldsymbol{P}_G .
- 3. The sum-of-entries of this representation counts the homomorphisms of interests. It can be interpreted as a character of a certain subrepresentation. The desired matrix equation arises from the following theorem:

Theorem Let $\varphi \colon \Gamma \to \mathbb{C}^{V \times V}$ and $\psi \colon \Gamma \to \mathbb{C}^{W \times W}$ be finite-dimensional representations of an involution monoid Γ . Then the following are equivalent:

- 1. For all $g \in \Gamma$, soe $\psi(g) = \sec \varphi(g)$.
- 2. There exists a pseudo-stochastic $X \in \mathbb{C}^{W \times V}$ such that $X\varphi(g) = \psi(g)X$.

Graphs of Bounded Pathwidth

Extending the known characterisation of homomorphism indistinguishability over graphs of treewidth $\leq k$ in terms of the existence of a *non-negative* solution to the Sherali–Adams-style relaxation $\mathsf{L}^{k+1}_{\mathsf{iso}}(G,H)$ of the ILP for graph isomorphism, we prove the following:

Theorem Let $k \in \mathbb{N}$. Graphs G and H are homomorphism indistinguishable over graphs of pathwidth $\leq k$ if and only if $\mathsf{L}^{k+1}_{\mathsf{iso}}(G,H)$ has a *rational* solution.

Graphs of Bounded Treedepth

Our techniques yield a novel system of equations characterising homomorphism indistinguishable over graphs of bounded treedepth.

Theorem Let $k \in \mathbb{N}$. Graphs G and H are homomorphism indistinguishable over graphs of treedepth $\leq k$ if and only if the system of equations stated below has a rational solution.

$$\sum_{v' \in V(G)} X(\boldsymbol{w}w, \boldsymbol{v}v') = X(\boldsymbol{w}, \boldsymbol{v}) \qquad \text{for all } \boldsymbol{w} \in V(H) \text{ and } \boldsymbol{v} \in V(G)^{\ell}, \\ \boldsymbol{w} \in V(H)^{\ell} \text{ where } 0 \leq \ell < k. \\ \sum_{w' \in V(H)} X(\boldsymbol{w}w', \boldsymbol{v}v) = X(\boldsymbol{w}, \boldsymbol{v}) \qquad \text{for all } \boldsymbol{v} \in V(G) \text{ and } \boldsymbol{v} \in V(G)^{\ell}, \\ \boldsymbol{w} \in V(H)^{\ell} \text{ where } 0 \leq \ell < k. \\ X(\boldsymbol{w}, \boldsymbol{v}) = 0 \qquad \text{if not } \boldsymbol{v}_i = \boldsymbol{v}_{i+1} \iff \boldsymbol{w}_i = \boldsymbol{w}_{i+1} \\ \text{for all } i < k. \\ X((), ()) = 1 \qquad \text{for the empty tuple ()}.$$

References

[1] M. Grohe, G. Rattan and T. Seppelt. 'Homomorphism Tensors and Linear Equations'. In: 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France. Ed. by M. Bojańczyk, E. Merelli and D. P. Woodruff. Vol. 229. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi: 10.4230/LIPIcs.ICALP.2022.26.